Секция «Геометрия и топология»

Поиск нулей многозначных функционалов, подчиненных сходящейся системе подмножеств.

Ястребов Кирилл Сергеевич

Студент (магистр)

Московский государственный университет имени М.В.Ломоносова, Факультет вычислительной математики и кибернетики, Кафедра общей математики, Москва, Россия

E-mail: yastrebovks@qmail.com

В докладе представлено развитие метода функционалов, подчиненных сходящимся рядам [1], обобщающего метод так называемых поисковых функционалов, описанный в [2,3]. В отличие от работы [1], рассматриваются многозначные и не обязательно положительные функционалы.

Определение 1. Назовем систему замкнутых ограниченных подмножеств $U = \{U_k\}_{k=0}^{\infty}$ в \mathbb{R} сходящейся, если отклонения этих множеств от нуля $d_k = \sup_{x \in U_k} \rho(x,0)$ образуют сходя-

щийся ряд $\sum\limits_{k=1}^{\infty}d_k$ с монотонно убывающими членами.

Пусть задан многозначный функционал $\varphi: X \to P(\mathbb{R})$ на метрическом пространстве (X, ρ) , где $P(\mathbb{R})$ - совокупность непустых подмножеств в \mathbb{R} .

Определение 2. Индексом точки $x \in X$ относительно пары $(\varphi, \{U_k\})$ называется число J(x), определяемое по следующей формуле:

$$J(x) = J_U^{\varphi}(x) := \begin{cases} 0, \varphi(x) \cap (\bigcup_{k=1}^{\infty} U_k) = \emptyset, \\ n = \max\{k \in \mathbb{N} | \varphi(x) \cap U_k \neq \emptyset\}, \exists k \in \mathbb{N}, \varphi(x) \cap U_k \neq \emptyset, \\ \infty, \varphi(x) = 0. \end{cases}$$

Определение 3. Будем говорить, что функционал φ подчинен сходящейся системе U, если для любого $x \in X$ такого, что $\varphi(x) \cap (\bigcup_{k=1}^{\infty} U_k) \neq \emptyset$, существует $x' \in X$, что $\rho(x,x') \leq d_{J(x)}$, и J(x') > J(x).

Определение 4 [3]. График $Graph(\varphi)$ функционала φ называется $\{0\}$ -полным, если любая фундаментальная последовательность его элементов

 $\{(x_n, \gamma_n)\}_{n=1,2,...}, \gamma_n \in \varphi(x_n), \gamma_n \to 0, n \to \infty$, сходится к некоторому элементу $(\xi, 0)$, где $\xi \in Nil(\varphi) = \{x \in X | 0 \in \varphi(x)\}.$

График $Graph(\varphi)$ функционала φ называется $\{0\}$ -замкнутым, если для каждого его предельного элемента вида $(\xi,0)$ верно, что $\xi \in Nil(\varphi)$.

Получена следующая теорема о существовании и поиске нулей функционалов, подчиненных системе U, описанной выше.

Теорема 1. Теорема 1. Пусть функционал $\varphi: X \to P(\mathbb{R})$ подчинен сходящейся системе U замкнутых подмножеств, и выполнено хотя бы одно из условий:

- 1) X полно и график $Graph(\varphi)$ функционала φ 0-замкнут;
- 2) $Graph(\varphi)$ θ -полон.

Тогда множество нулей $Nil(\varphi) \neq \emptyset$, и для любого $x_0 \in X$ существует последовательность $\{x_m\}_{m=0,1,\dots}$, начинающаяся из x_0 и сходящаяся к некоторой точке $\xi \in Nil(\varphi)$, т.е.

$$0 \in \varphi(\xi)$$
. Причем $\rho(x_0, \xi) \leq \sum_{j=0}^{\infty} d_{J(x_0)+j}$.

Определение 5. Рассмотрим отображение, которое сопоставляет точке x множество всех таких точек $\xi \in Nil(\varphi)$, что $\rho(x,\xi) \leq \sum\limits_{j=0}^{\infty} d_{\widehat{I}_{\varphi}(x)+j}$. Обозначим его $\widehat{\gamma}_{\varphi}: X \to P(Nil(\varphi))$.

Представляет интерес вопрос об устойчивости предложенного метода поиска нулей функционалов по отношению к изменению начальной точки. В результате изучения этого вопроса получен следующий результат.

Теорема 2. Теорема 2. Пусть $\varphi_*: X \to \mathbb{R}$, $\epsilon \partial e \ \varphi_*(x) = \inf_{y \in \varphi(x)} \{|y|\}, x \in X$ - непрерывный

функционал. Кроме того, пусть выполнено хотя бы одно из условий:

- 1) множество $Nil(\varphi)$ компактно,
- 2) любой замкнутый шар в X компактен.

Тогда многозначное отображение $\widehat{\gamma}_{\varphi}$ секвенциально полунепрерывно сверху, т.е. для любого x_0 , любой последовательности $x_m \to x_0$ и любых $\xi_m \in \widehat{\gamma}_{\varphi}(x_m)$ верно, что $\rho(\xi_m, \widehat{\gamma}_{\varphi}(x_0)) \underset{m \to \infty}{\to} 0$.

Источники и литература

- 1) Гайнуллова С.Р., Фоменко Т.Н., Функционалы, подчиненные сходящимся рядам, и каскадный поиск особенностей отображений. Математические Заметки, том 96, 2, 2014, с.314-317.
- 2) Т.Н. Фоменко, Устойчивость каскадного поиска. Вестник Московского Государственного Университета, Серия Математическая, с. 171-190, Том 74, 5, 2010 г.
- 3) T.N. Fomenko, Cascade search principle and its applications to the coincidence problem of n one-valued or multi-valued mappings. Topology Appl. 157, 760-773, 2010, c.760-773.

Слова благодарности

Благодарю своего терпеливого научного руководителя и лучшего учителя, Татьяну Николаевну Фоменко!