Термохимия нитрозооксидов. Расчёт энтальпии образования.

Птицына Анна Александровна

Магистрант

Башкирский Государственный Университет

Нитрозооксиды - соединения, обладающие большой реакционной способностью - впервые были обнаружены с помощью электронной и ЭПР-спектроскопии в низкотемпературных стеклующихся матрицах. Настоящая работа посвящена исследованию термохимии нитрозооксидов.

В данной работе было найдено два локальных минимума энергии для молекул типа RNOO на синглетной поверхности потенциальной энергии (ППЭ) и три минимума - на триплетной ППЭ.

Геометрические характеристики молекулы HNOO на синглетной и триплетной ППЭ.

На синглетной ППЭ										
Соединение	R(H-N),Å	R(N-O),Å	R(O-O),Å	NOO,	HNO,	HNOO,	Е(отн.),			
	K(11-11),A	K(11-0),A	K(O-O),A	град.	град.	град.	кДж/моль			
Цис-	1.038	1.266	1.303	119.7	105.3	0.0	0.0			
Транс-	1.030	1.288	1.288	116.3	101.0	180.0	7.88			
На триплетной ППЭ										
Соединение	R(H-N),Å	R(N-O),Å	R(O-O),Å	NOO,	HNO,	HNOO,	Е(отн.),			
	K(11-11),A	K(11-0),A		град.	град.	град.	кДж/моль			
Гош-	1.032	1.409	1.328	109.3	102.1	34.9	0			
Транс(1)-	1.033	1.422	1.325	107,8	98.8	180.0	2.63			
Транс(2)-	1.028	1.361	1.353	113.7	98.5	180.0	44.63			

Обнаружено, что связь N-O mpanc(1)- конформера нитрозооксидов на триплетной ППЭ имеет длину 1.422 Å, и фактически является одинарной. Также выявлено отсутствие uuc- конформера на триплетной ППЭ, и присутствие courrect- конформера, который в свою очередь отсутствует на синглетной ППЭ.

Были рассчитаны энтальпии образования ряда соединений типа RNOO на триплетной и синглетной поверхностях потенциальной энергии.

Энтальпии образования RNOO

onianimi copasobamini in to c										
$\Delta_{\rm f}$ Н° ₂₉₈ , кДж/моль, (на синглетной ППЭ)										
Соединение	HNOO	CH ₃ NOO	C ₂ H ₅ NOO	C ₃ H ₇ NOO	C ₆ H ₅ NOO					
Цис-	202.4	150.0	115.2	88.9	274.7					
Транс-	211.7	170.6	136.2	109.3	272.1					
$\Delta_{\rm f} {\rm H}^{\circ}_{298}$, кДж/моль, (на триплетной ППЭ)										
Соединение	HNOO	CH ₃ NOO	C ₂ H ₅ NOO	C ₃ H ₇ NOO	C ₆ H ₅ NOO					
Гош-	287.5	234.9	199.7	173.5	-					
Транс(1)-	291.4	241.3	203.6	177.5	-					

Установлено, что различие энтальпий образования *цис*- и *транс*- форм нитрозооксида с алкильными заместителями не менее 20 кДж/моль, причём *цис*- форма более стабильна. Что же касается фенилзамещённого нитрозооксида, то разница энтальпий образования близка к 2 кДж/моль, и более устойчивым является *транс*-конформер.

Также энтальпии образования расчитывались методом изодесмических реакций.

Результаты оценки энтальпии образования двумя различными методами различаются на малую величину, что показывает пригодность метода ИДР для расчёта нитрозооксидов.

Все расчёты проводились с помощью программы Gaussian 98 методом UB3LYP, с использованием базисных наборов 6-311++G(3df,2p) и 6-311G(d). Работа выполнена при финансовой поддержке АВЦП Минобрнауки РФ «Развитие научного потенциала высшей школы, код проекта РНП.2.2.1.1.6332.