Регистрация конверсионного распада ядер железа, возбужденных излучением плазмы мощного фемтосекундного лазерного импульса Головин Григорий Владимирович

студент

Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: deep68@yandex.ru

Экспериментально исследовался распад возбужденных ядер мишени из 57 Fe с энергией 14 κ эB и временем жизни 98 Hc в основное состояние. Возбуждение ядер происходило излучением плазмы, которая образовывалась на поверхности мишени под воздействием мощного фемтосекундного лазерного импульса со следующими параметрами: W=2 M2m2, $\tau=60$ ϕc , $S_{\phi o k y c}=12$ M6m2. Интенсивность при этом составляла $\approx 10^{17}$ Bm/cm2.

Введение

Плазма, которая образуется на поверхности твердотельной мишени под воздействием мощного фемтосекундного лазерного импульса, представляет серьезный интерес для изучения. Это обусловлено ее твердотельной плотностью ($\approx 5 \cdot 10^{22} \ cm^{-3}$) и большими энергиями частиц за счет как столкновительных, так и бесстолкновительных механизмов поглощения из падающей световой волны. Так, для импульса уже «умеренной» ($\approx 10^{17} \ Bm/cm^2$) интенсивности, температура «горячего» электронного компонента достигает порядка $10 \ \kappa 9B$. Это позволяет говорить о возможности возбуждения низколежащих ядерных состояний как электронным ударом, так и прямым поглощением рентгеновского излучения плазмы ядром.

Распад возбужденных ядерных состояний возможен по двум каналам: радиационному и конверсионному. В первом случае свидетельствовать о произошедшем распаде будут гамма-кванты с энергией, соответствующей совершенному ядром переходу. Во втором — электроны, появление которых отстоит от момента возбуждения ядер на время, сопоставимое со временем жизни возбужденного уровня. Кроме этого электроны будут обладать энергией, равной разности энергии возбужденного уровня и энергии связи их с ядром.

В эксперименте использовалась мишень из железа (с 2% содержанием изотопа 57 Fe), потому что энергия возбуждения ядра этого изотопа составляет $14 \ \kappa 9B$, т.е. можно рассчитывать на эффективное возбуждение ядер, к тому же время жизни уровня $-98 \ Hc$, что обеспечивает необходимое для регистрации конверсионных электронов разнесение их и теплового компонента плазмы.

Для определения «продуктов» распада возбужденного состояния ядер 57 Fe были теоретически оценены парциальные коэффициенты конверсии на отдельные электронные оболочки, которые позволили найти спектр конверсионных электронов. Было показано, что основным «продуктом» распада являются конверсионные электроны с энергией $7.2~\kappa 9B$. Суть эксперимента по регистрации актов распада сводилась к измерению тока электронов из плазмы и выделению в нем конверсионного компонента на фоне шумовых электронов. Логично допустить, что количество шумовых электронов зависит от энергии регистрируемых частиц слабо, тогда в диапазоне энергий около $7.2~\kappa 9B$ можно ожидать увеличения количества зарегистрированных электронов за счет конверсионных частиц.

Экспериментальная установка

Экспериментальная установка состоит из двух камер. В камере взаимодействия установлена мишень, которую с помощью двух шаговых двигателей можно перемещать в вертикальной плоскости. Лазерный пучок заводится в эту камеру через окно, предварительно фокусируясь на мишени посредством объектива. Положение фокусирующего элемента можно регулировать микрометрическим винтом. Электронная

компонента через соединяющую герметичную трубу попадает на электростатический спектрометр в камеру регистрации, где попадает на микроканальную пластину (МКП).

Обе камеры откачиваются до вакуума порядка 10^{-5} Торр системой из турбомолекулярного и форвакуумного насосов. Для юстировки установки и грубой фокусировки излучения используется гелий-неоновый лазер. Точная фокусировка производится по максимуму выхода рентгеновского излучения.

рис. 1: Схема экспериментальной установки

Результаты эксперимента

Были измерены электронные токи из плазмы при 30 различных значениях энергии регистрируемых электронов.

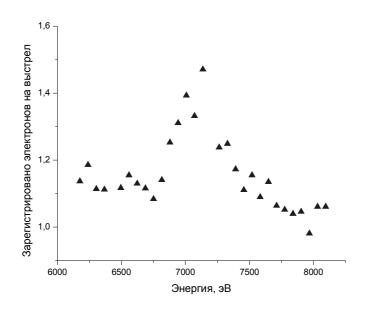


рис. 2: Зависимость количества зарегистрированных электронов от их энергии

Максимум зарегистрированных электронов соответствует энергии $7,1\pm0,1$ кэB (расчетное значение 7,2 кэB), что позволяет идентифицировать данные электроны, как конверсионные. Ширина максимума составляет 0,7 кэB и обусловлена разрешающей способностью спектрометра.

Таким образом, впервые был зарегистрирован конверсионный распад возбужденного ядерного состояния, причем возбуждение ядер осуществлялось излучением плазмы мощного фемтосекундного лазерного импульса.