Кластеризация спектральных характеристик объектов Арустамян Арам Иванович

апирант

Ставропольский государственный университет, Ставрополь, Россия E-mail: arustam@inbox.ru

Проблема контроля заданных параметров и характеристик технологических процессов и объектов в условиях воздействия дополнительных сигналов может быть решена способом, основанным на их кластеризации. Такой подход предполагает выделение контролируемых величин, которые, с одной стороны, максимально близки к характеристикам класса идентифицируемых объектов и процессов, с другой стороны, максимально далеки от характеристик других классов аналогичной природы.

Названная проблема характерна, например, для датчиков инфракрасного, видимого и ультрафиолетового спектров излучений, широко используемых в системах дистанционной идентификации объектов. Наиболее часто критерием кластеризации служит среднеквадратичное отклонение характеристик, в рассматриваемом случае — их энергии излучения в диапазоне чувствительности, пороговое значение которой и служит границей кластеров. Однако, для характеристик сложной формы с большим числом экстремумов такой критерий неэффективен. Более того, экстремум в одной области для характеристики, например, одного кластера, может быть скомпенсирован экстремумом в другой области иного кластера.

Предлагается для кластеризации характеристик излучения i—го объекта использовать квадратичную форму отклонений составляющих ряда Фурье. Для этого интервал излучения λ_{min} ... λ_{max} регистрируемого объекта i представляется функцией $f_i(x)$ в виде ряда Фурье [1]:

$$f_i(x) = A_{oi} + A'_{1i} \cdot \sin x + A''_{1i} \cdot \cos x + A'_{2i} \cdot \sin 2x + A''_{2i} \cdot \cos 2x + \dots + A'_{ki} \cdot \sin kx + A''_{ki} \cdot \cos kx + \dots (1)$$

где A_{oi} - постоянная составляющая,

 A'_{ki} , A''_{ki} — амплитуды синусоидальной и косинусоидальной k-й составляющих ряда,

величина х выражается через длину волны

$$x = \omega \cdot \lambda = 2 \cdot \pi \cdot \frac{\lambda - \lambda min}{\lambda max - \lambda min},$$
(2)

где λ_{max} - λ_{min} - регистрируемый интервал спектра излучения.

Спектральную характеристику объекта, принадлежащего другому объекту j, также можно представить рядом Фурье $f_j(x)$. Ограничим конечным числом членов рядов $f_i(x)$ и $f_j(x)$. В этом случае возникают погрешности ε_i и ε_j , которые определяет, с одной стороны, требуемое число членов рядов, а с другой стороны, минимальную границу кластеризации.

Предлагаемый метод кластеризации объектов по спектральным характеристикам излучения $f_i(x) = f_j(x)$, например, принадлежащим к одному кластеру, основан на регистрации выполнения условия:

$$\sum_{i}^{N} (f_{ik}(\mathbf{x}) - f_{jk}(\mathbf{x}))^{2} \leq \varepsilon_{i} + \varepsilon_{j}.$$
 (3)

При разложении характеристик в ряд Фурье получено условие выполнимости (3):

$$A_{oi} = A_{oi}, A'_{li} = A'_{lj}, A''_{li} = A''_{lj}, A'_{2i} = A'_{2j}, A''_{2i} = A''_{2j}, \dots, A'_{ki} = A'_{kj}, A''_{ki} = A''_{kj}.$$
(4)

Практическое применение предложенного метода кластеризации позволяет существенно ограничить число контролируемых величин по сравнению со спектральным анализом, гарантируя тот же самый результат.

Литература

1. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. – М.: Наука, 1977. - 832 с.