Скорости эволюции ферментов дыхательной цепи различных животных $E\phi$ имов Денис Юрьевич 1

студент

Белорусский государственный медицинский университет, Минск, Республика Беларусь E-mail: 1f1 f all stupid@rambler.ru

Цель исследования: установить скорости эволюции ферментов дыхательной цепи различных животных.

Материалы и методы. Проанализированы взятые на (www.ncbi.nih.nlm.gov) аминокислотные последовательности ферментов дыхательной цепи (субъединиц 1, 2, 3, 4, 4L, 5, 6 НАДН-дегидрогеназ (НАДН-ДГ), цитохрома b (Ц b), субъединиц 1, 2, 3 цитохром-с-оксидазы (ЦО), АТФазы 6) млекопитающих: приматов (человека, шимпанзе, бабуина), парнокопытных (быка, козла, непарнокопытных (лошади), хищных (кошки, медведя, собаки), грызунов (крысы, мыши), зайцеобразных (кролика); птиц (петуха), рептилий (аллигатора), земноводных (лягушки), рыб (данио), ланцетника, круглых червей (аскариды, трихинеллы, цианорабдитис). Изучаемые последовательности выровнены с помощью программы ClustalW Protein. Эволюционные дистанции вычислены методом EIM [1]. Скорость эволюции определена по методу М. Кимуры [2]. Полученные результаты обработаны статистически.

Результаты и обсуждение. В соответствии с полученными скоростями эволюции изученных ферментов все животные разделены на 3 группы (с различными, но приблизительно постоянными в пределах группы темпами эволюционных изменений). Первую группу составили приматы, вторую — млекопитающие, за исключением приматов, третью — круглые черви и хордовые, за исключением млекопитающих (табл.).

Таблица. Средние скорости эволюции ферментов дыхательной цепи различных групп животных

тистици: средние эксретии экспеции					population general desired				Pustin mibir ip.		J THE STREET	
Группа животны x / фермент	НАДН -ДГ1	НАДН -ДГ2	НАДН -ДГ3	НАДН -ДГ4	НАДН -ДГ4L	НАДН -ДГ5	НАДН -ДГ6	ЦЪ	АТФ- аза 6	ЦО-1	ЦО-2	ЦО-3
Первая	4,39± 1,252 ^{2,3}	5,04± 2,249	5,73± 0,007 ^{2,3}	5,14± 0,573 ^{2,3}	3,26± 3,323	6,28± 0,389 ^{2,3}	4,50± 1,082 ³	5,37± 0,891 ^{2,3}	5,22± 0,205 ^{2,3}	1,50± 0,581 ³	$2,55\pm 0,651^3$	2,77± 0,314 ^{2,3}
Вторая	1,44± 0,040 ^{1,3}	2,80± 0,053 ³	1,79± 0,043 ^{1,3}	$^{1,75\pm}_{0,032^{1,3}}$	$1,94\pm 0,038^3$	2,06± 0,027 ^{1,3}	$2,91\pm 0,090^3$	1,26± 0,067 ^{1,3}	1,47± 0,063 ^{1,3}	$0,47\pm 0,023^3$	$1,54\pm 0,137^3$	0,82± 0,043 ^{1,3}
Третья	0,54± 0,023 ^{1,2}	$1,12\pm 0,070^2$	0,77± 0,061 ^{1,2}	$^{0,76\pm}_{0,043^{1,2}}$	$1,05\pm 0,094^2$	0,84± 0,039 ^{1,2}	1,68± 0,135 ^{1,2}	0,47± 0,037 ^{1,2}	$0,93\pm 0,062^{1,2}$	$0,23\pm 0,018^{1,2}$	0,51± 0,041 ^{1,2}	$0,39\pm 0,039^{1,2}$

Примечание. Знаком 1 обозначены достоверные (p < 0,05) различия скорости эволюции соответствующего фермента по сравнению с таковыми приматов, 2 – млекопитающих за исключением приматов, 3 – круглых червей и хордовых за исключением млекопитающих.

Установлено, что наибольшие скорости эволюции изученных ферментов дыхательной цепи характерны для приматов, а наименьшие — для круглых червей и хордовых за исключением млекопитающих. При этом различия в скоростях эволюции всех изученных белков млекопитающих (за исключением приматов) достоверны с таковыми круглых червей и хордовых (за исключением млекопитающих). Такие различия скоростей эволюции данных ферментов, вероятно, свидетельствуют об изменении их структуры и функции в процессе эволюции. Наибольшая скорость эволюции характерна для НАДН-ДГ6, наименьшая — для ЦО-1 (ферменты приматов не учитывались из-за чрезмерно высоких темпов их эволюционных изменений и малого числа наблюдений).

Литература

- 1. Барковский Е.В. [и др.] (2005) Методы молекулярной эволюции и филогенетики: учеб.-метод. пособие // Мн.: БГМУ. 63 с.
- 2. Кимура М (1985) Молекулярная эволюция: теория нейтральности. М.: Мир. 90 с.

¹ Автор выражает благодарность доценту, к.м.н. Бутвиловскому В.Э. за помощь в подготовке тезисов